Needs for other LWFA concepts and experiments

Goals of OSIRIS/QuickPIC LWFA effort

- Blowout regime (not bubble regime)
 - $a 0=2\sim20$
 - For both HEP and light sources
- Supporting UCLA and LLNL/UCLA experiments
 - Self-guiding
 - lonization trapping
- Supporting other experiments
 - e.g., RAL and/or IC
- Real-time steering of experiments
- Challenges
 - Verification and validation
 - Emittance/energy spread/charge
 - Speeding up turn around time

Supporting Experiment Design with OSIRIS

Blowout and Bubble regimes: Requires PIC simulations

Rosenzweig et al. 1990, Puhkov and Meyer-ter-vehn 2002, Lu et al. 2006, 2007

Driven by an electron beam

Driven by a laser pulse

- Ion channel formed by crossing
- Ideal linear focusing force
- Uniform acceleration
- Fluid model breakdown!
- 2D/3D and electromagnetic in nature!
- Provides stable wakes and lasers

What do we want to know?

- Wake excitation for given drivers
- Beam loading, transformer ratio
- Instabilities
- Self-injection, wave breaking
- How to choose parameters for a real LWFA accelerator?
- How does one accelerate positrons?

A phenomenological theory for wake excitation

Lu et al., PRL 96, 165002, 2006

Ion column + sheath + linear region

(r, ξ) Phasespace

Ez vs X

Time = $300.00 [1/\omega_p]$

Jniform

 $X [c/\omega_p]$

-5

Ez [$\mathrm{mc} \ \omega_{\mathrm{p}} \ / \ \mathrm{e}$] 0.5 0.0 0.0 -0.5 0.1 0.1 -1.0

Focusing force vs X

Time = $300.00 [1/\omega_p]$

Linear

 $X[c/\omega_p]$

-5

Ultra-relativistic blowout

$$r_b >> 1(>\sim 4)$$

$$r_b >> 1(>\sim 4)$$

$$r_b \frac{d^2 r_b}{d\xi^2} + 2(\frac{dr_b}{d\xi})^2 + 1 = 0$$

Nearly a circle!

LWFA in a controlled nonlinear blowout regime: $0=2\sim10$

The accelerating structure needs to remain as stable, for this purpose we choose the laser spot size and intensity from the condition:

[Matched]:
$$k_p w_0 \approx k_p R_b \approx 2\sqrt{a_0} \Rightarrow a_0 \approx 2\left(\frac{P}{P_c}\right)^{1/3}$$

The accelerating field in the ion channel decreases linearly from the front reaching minimum value with magnitude:

$$\begin{bmatrix} \text{Maximum} \\ \text{fel d} \end{bmatrix} : \frac{eE_M}{mc\omega_p} \approx \frac{1}{2} k_p R_b \approx \sqrt{a_0}$$

The acceleration process is limited by dephasing:

$$\begin{bmatrix} \text{Acceleration} \\ \text{distance} \end{bmatrix} : \begin{array}{c} a_0 > 1 \\ L \approx R_b \end{array} \Rightarrow L_{etch} \ge L_{\phi} \approx \frac{4\sqrt{a_0}}{3k_0} \left(\frac{k_0}{k_p}\right)^{\frac{1}{2}} \end{bmatrix}$$

Using QuickPIC to scale up using theory of Lu et al.

- The emittance remains relatively constant throughout all of the simulations.
- To reduce the energy spread an exact theory is required for beam loading and for the evolution of the laser after hundreds of Z_R .

The UCLA/LLNL collaboration is using the 200 TW Callisto Laser Facility at the Jupiter Laser Facility for LWFA experiments

Goals of OSIRIS/QuickPIC LWFA effort

- Blowout regime (not bubble regime)
 - $a 0=2\sim20$
 - For both HEP and light sources
- Supporting UCLA and LLNL/UCLA experiments
 - Self-guiding
 - lonization trapping
- Supporting other experiments
 - e.g., RAL and/or IC
- Real-time steering of experiments
- Challenges
 - Verification and validation
 - Emittance/energy spread/charge
 - Speeding up turn around time

